混合列压缩(HCC)在OLAP及OLTP场景中的测试

作者:李敏,云和恩墨交付工程师。

创新互联公司主要从事成都网站制作、成都网站建设、网页设计、企业做网站、公司建网站等业务。立足成都服务岐山,十年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575

Oracle Corp最先在11G R2中引入了EHCC(Exadata Hybrid Columnar Compression),早先限制较多,体现的方式是这里的E,指的是exadata一体机上才可以启用这个特性。作为exadata上众多优秀特性里一个重要部分,和smart scan或者说cell offloading对比,虽然EHCC能带来极大的空间压缩,但是EHCC还是需要DBA额外做一些操作,甚至多个场景的评估来决定是否要采用。

EHCC(或者说后来因使用平台更多,在除了exadata之外,在Oracle corp的zfssa、Pillar Axiom、SuperCluster、ODA上都支持了之后改成了叫做HCC)本质上解决的问题是IO问题,也可以说,是为了在CPU及IO间平衡,拿算力换空间,目前看来在大部分场景下,这个交换是非常超值的,几倍、十几倍甚至几十倍的压缩率都很常见,如果这部分数据是冷数据,这个特性看起来是完美的。

但是有些时候不是这样的。本文从HCC的多个方面选出一两个点来简述这个特性给DBA带来的第一个直观感受。

混合列压缩(HCC)在OLAP及OLTP场景中的测试

测试环境的DB版本

混合列压缩(HCC)在OLAP及OLTP场景中的测试


首先,准备环境

创建表空间,这里选择多个小文件的方式。

CREATE SMALLFILE TABLESPACE EHCCTBS
    DATAFILE
        '/ehccfs/ORA19C/ora19pdb1/EHCCTBS_001.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240 ,
        '/ehccfs/ORA19C/ora19pdb1/EHCCTBS_002.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240 ,
        '/ehccfs/ORA19C/ora19pdb1/EHCCTBS_003.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240 ,
        '/ehccfs/ORA19C/ora19pdb1/EHCCTBS_004.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240
    BLOCKSIZE 8192
    FORCE LOGGING
    DEFAULT COLUMN STORE NO COMPRESS  NO INMEMORY
    ONLINE
    SEGMENT SPACE MANAGEMENT AUTO
    EXTENT MANAGEMENT LOCAL AUTOALLOCATE;
(左右滑动,查看完整代码,下同)


这里选择NO Compress方式创建表空间,不把压缩作为表空间的属性,而用CREATE TABLE的方式来指定压缩属性。

[ora19c@dm01db06 ~]$ sqlplus / as sysdba

SQL*Plus: Release 19.0.0.0.0 - Production on Sun Mar 24 10:07:02 2019
Version 19.2.0.0.0

Copyright (c) 1982, 2018, Oracle.  All rights reserved.


Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.2.0.0.0

SQL> create user hr identified by welcome1 default tablespace ehcctbs;

User created.

SQL> grant dba to hr;

Grant succeeded.

SQL> create table hr.big_table_no_ehcc as select * from dba_objects;

Table created.

为了体现压缩率的差距,我创建了一个360M的未压缩表,来对比8种压缩方式下的压缩率。

[ora19c@dm01db06 ~]$ sqlplus hr/welcome1@ora19pdb1

SQL*Plus: Release 19.0.0.0.0 - Production on Sun Mar 24 10:07:28 2019
Version 19.2.0.0.0

Copyright (c) 1982, 2018, Oracle.  All rights reserved.

Last Successful login time: Sun Mar 24 2019 09:36:33 +08:00

Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.2.0.0.0

SQL>

SQL> insert into BIG_TABLE_NO_EHCC select * from BIG_TABLE_NO_EHCC;

72360 rows created.

SQL> /

144720 rows created.

SQL> /

289440 rows created.

SQL> /

578880 rows created.

SQL> insert into BIG_TABLE_NO_EHCC select * from BIG_TABLE_NO_EHCC;

1157760 rows created.

SQL> commit;

SQL> select count(*) from BIG_TABLE_NO_EHCC;

  COUNT(*)
----------
   2315520

SQL> col OWNER for a15
SQL> col SEGMENT_NAME for a40
SQL> select OWNER,SEGMENT_NAME,BYTES/1048576 SIZE_MB  from dba_segments where SEGMENT_NAME like ('%EHCC%');

OWNER           SEGMENT_NAME                                SIZE_MB
--------------- ---------------------------------------- ----------
HR              BIG_TABLE_NO_EHCC                               360

之后基于这个基础表,创建8个不同HCC压缩方式的表。这里我timing on了,但是只做参考,因为redo是200M的,导致CTAS的时候有一次归档行为,IO受影响,可能有一次的时间受影响。

SQL> create table EHCC_QUERY_HIGH compress for query high tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:10.61
SQL> create table EHCC_QUERY_LOW compress for query low tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:21.33
SQL> create table EHCC_ARCHIVE_HIGH compress for archive high tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:38.75
SQL> create table EHCC_ARCHIVE_LOW compress for archive low  tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:11.07
SQL> create table EHCC_QUERY_HIGH_LOCKING compress for query high  row level locking tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:09.46
SQL> create table EHCC_QUERY_LOW_LOCKING compress for query low row level locking tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:12.35
SQL> create table EHCC_ARCHIVE_HIGH_LOCKING compress for archive high  row level locking tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:33.90
SQL> create table EHCC_ARCHIVE_LOW_LOCKING compress for archive low  row level locking tablespace ehcctbs as select * from big_table_no_ehcc ;

Table created.

Elapsed: 00:00:17.50


然后查看这些不同压缩方式下的对象大小。注意这里的LOCKING,指的是row level locking。


混合列压缩(HCC)在OLAP及OLTP场景中的测试

除了第一个基础表之外,每两个相邻对象的压缩区别是row level locking方式的区别。

hr.BIG_TABLE_NO_EHCC这个表是基于PDB的dba_objects来创建的一个28列的表,实话说,这个表做HCC跑分测试并不适合,但是依然能在archive high模式下,达到惊人的360/15=24倍的压缩率。


混合列压缩(HCC)在OLAP及OLTP场景中的测试

那么,对未压缩的基础表强制全扫,再对最高压缩的archive high的表做强制全扫的话,哪个快呢?


混合列压缩(HCC)在OLAP及OLTP场景中的测试


多次测试,结果出乎意料。16秒跟1秒下的差距,这是没在exadata上的结果,如果集合exadata的cell offloading,可以详见OLAP下,HCC的表现了。

Oracle对自家产品间的协同和优化令人目瞪狗呆。

14336,一级位图块
*** 2019-03-24T17:14:51.182266+08:00 (ORA19PDB1(3))
Start dump data blocks tsn: 6 file#:24 minblk 14336 maxblk 14336
............................
............................
............................
Dump of Second Level Bitmap Block
   number: 9       nfree: 1       ffree: 8      pdba:     0x06003802
   Inc #: 0 Objd: 72974 Flag: 3
  opcode:0

这里提示到:

   Second Level Bitmap block DBAs
   --------------------------------------------------------
   DBA 1:   0x06003801
二级位图块,正好是一级14336的下一个块:

混合列压缩(HCC)在OLAP及OLTP场景中的测试

下面是这个二级位图块的信息:

Dump of Second Level Bitmap Block
   number: 9       nfree: 1       ffree: 8      pdba:     0x06003802
   Inc #: 0 Objd: 72974 Flag: 3
  opcode:0
 xid:
  L1 Ranges :
  --------------------------------------------------------
   0x06003800  Free: 1 Inst: 1
   0x06003840  Free: 1 Inst: 1
   0x05803400  Free: 1 Inst: 1
   0x06003880  Free: 1 Inst: 1
   0x05803480  Free: 1 Inst: 1
   0x06003900  Free: 1 Inst: 1
   0x05803500  Free: 1 Inst: 1
   0x06003980  Free: 1 Inst: 1
   0x05803580  Free: 7 Inst: 1

  --------------------------------------------------------
End dump data blocks tsn: 6 file#: 24 minblk 14337 maxblk 14337

看样子是没什么东西。似乎是表太小没用到。

14338块信息不多。这里看14339块。

block_row_dump:
tab 0, row 0, @0x30
tl: 8016 fb: --H-F--N lb: 0x0  cc: 1
nrid:  0x06003804.0
col  0: [8004]
Compression level: 04 (Archive High)
 Length of CU row: 8004
kdzhrh: ------PC- CBLK: 0 Start Slot: 00
 NUMP: 22
 PNUM: 00 POFF: 7774 PRID: 0x06003804.0
 PNUM: 01 POFF: 15790 PRID: 0x06003805.0
 PNUM: 02 POFF: 23806 PRID: 0x06003806.0
 PNUM: 03 POFF: 31822 PRID: 0x06003807.0
 PNUM: 04 POFF: 39838 PRID: 0x06003808.0
 PNUM: 05 POFF: 47854 PRID: 0x06003809.0
 PNUM: 06 POFF: 55870 PRID: 0x0600380a.0
 PNUM: 07 POFF: 63886 PRID: 0x0600380b.0
 PNUM: 08 POFF: 71902 PRID: 0x0600380c.0
 PNUM: 09 POFF: 79918 PRID: 0x0600380d.0
 PNUM: 10 POFF: 87934 PRID: 0x0600380e.0
 PNUM: 11 POFF: 95950 PRID: 0x0600380f.0
 PNUM: 12 POFF: 103966 PRID: 0x06003810.0
 PNUM: 13 POFF: 111982 PRID: 0x06003811.0
 PNUM: 14 POFF: 119998 PRID: 0x06003812.0
 PNUM: 15 POFF: 128014 PRID: 0x06003813.0
 PNUM: 16 POFF: 136030 PRID: 0x06003814.0
 PNUM: 17 POFF: 144046 PRID: 0x06003815.0
 PNUM: 18 POFF: 152062 PRID: 0x06003816.0
 PNUM: 19 POFF: 160078 PRID: 0x06003817.0
 PNUM: 20 POFF: 168094 PRID: 0x06003818.0
 PNUM: 21 POFF: 176110 PRID: 0x06003819.0
*---------
CU header:
CU version: 0   CU magic number: 0x4b445a30
CU checksum: 0xbdbe82d3
CU total length: 180160
CU flags: NC-U-CRD-OP
ncols: 26
nrows: 32759
algo: 0
CU decomp length: 175939   len/value length: 4332401
row pieces per row: 1
num deleted rows: 0
START_CU:

这部分信息较多,我按照个人的理解来说说。

tl: 8016 fb: –H-F–N这里的H是CUhead的意思。fb是flag byte,F是first的意思,P是previous,N是next。此外我没有dump最后一个row piece,按道理来说,最后一个0x06003819块上的fb会显示L的,代表last。(事实上我事后dump了,显示的LP)


nrid:   0x06003804.0这里nrid是next row piece id的意思,这里的数据是nrid:   0x06003804.0,换成10进制是rdba: 0x6003804(100677636) file: 24 ,block : 14340,24号文件14340块。


按照道理来说,14340块上显示的是类似PN,没有H的tag。


Compression level: 04 (Archive High)是HCC压缩格式。


NUMP: 22是代表这个CU里有多少个row piece,这里显示的是22个row piece,而根据这个地址看,一个row piece就是一个block,我理解是代表,这个CU里有22个block。


CU checksum: 0xbdbe82d3是这个CU的校验值。


nrows: 32759,代表这个CU里存了32759行,这是一个非常大的数值。

接下来,我们dump那个第二个CU块,14340块。

Start dump data blocks tsn: 6 file#:24 minblk 14340 maxblk 14340
..........................
..........................
..........................
block_row_dump:
tab 0, row 0, @0x1f
tl: 8033 fb: ------PN lb: 0x0  cc: 1
nrid:  0x06003805.0
col  0: [8021]
Compression level: 04 (Archive High)
 Length of CU row: 8021
kdzhrh: ---------START_CU:

如上文标识的一样,这是PN。

这里将分别按照insert,update,delete这三个DML来测试在HCC情况下相关的可能的压缩转换情况,ROWID变化情况,锁范围情况来阐述。

在DML场景中,对比两张表,非压缩表和压缩表。压缩表的所有行,都在一个CU的一个块里。

如下是创建的表,有一张普通表,一张archive high的表,以及一张row level locking的archive high表。他们分配的大小是一样的,这不代表在extents内占的空间是一样大,而是因为表初始分配的extents是8个block,每个block是8192 bytes。这个是ASSM的分配规律。

SQL> create table dml_test_no_ehcc as select * from dba_objects where rownum < 100;

Table created.

SQL> update dml_test_no_ehcc set OBJECT_ID=rownum;

99 rows updated.

SQL> commit;

Commit complete.

SQL> create table DML_TEST_ARCHIVE_HIGH compress for archive high tablespace ehcctbs as select * from dml_test_no_ehcc ;

Table created.

SQL> create table DML_TEST_ARCHIVE_HIGH_LOCKING compress for archive high  row level locking tablespace ehcctbs as select * from dml_test_no_ehcc ;

Table created.

col OWNER for a15
col SEGMENT_NAME for a40

SQL> select s.OWNER,s.SEGMENT_NAME,s.BYTES/1024 SIZE_MB,t.COMPRESS_FOR  from dba_segments s,dba_tables t where s.SEGMENT_NAME like ('DML_TEST_%') and s.owner=t.owner and s.segment_name =  t.table_name order by 2;

OWNER           SEGMENT_NAME                                SIZE_MB COMPRESS_FOR
--------------- ---------------------------------------- ---------- ----------------------------------
SYS             DML_TEST_ARCHIVE_HIGH                            64 ARCHIVE HIGH
SYS             DML_TEST_ARCHIVE_HIGH_LOCKING                    64 ARCHIVE HIGH ROW LEVEL LOCKING
SYS             DML_TEST_NO_EHCC          

接下来,需要证明这两个HCC的表的所有行都在同一个CU里。

混合列压缩(HCC)在OLAP及OLTP场景中的测试

混合列压缩(HCC)在OLAP及OLTP场景中的测试

这个时候,除去一级和二级位图块,dump每个表的第四个块,就是说DML_TEST_ARCHIVE_HIGH在24号文件的19203块,和DML_TEST_ARCHIVE_HIGH_LOCKING在24号文件的19211块,从dump信息中查看是否所有行在一个CU内。

19203块,信息如下,可以看到fb标识为Head,有F,有L,代表这个CU既是first也是last的CU,并且这个CU里的nrows 是99行。这都跟构造的环境一致。

data_block_dump,data header at 0x9b95a07c
===============
tsiz: 0x1f80
hsiz: 0x1c
pbl: 0x9b95a07c
     76543210
flag=-0------
ntab=1
nrow=1
frre=-1
fsbo=0x1c
fseo=0x1830
avsp=0x1814
tosp=0x1814
        r0_9ir2=0x0
        mec_kdbh9ir2=0x0
                      76543210
        shcf_kdbh9ir2=----------
                  76543210
        flag_9ir2=--R-----      Archive compression: Y
                fcls_9ir2[0]={ }
0x16:pti[0]     nrow=1  offs=0
0x1a:pri[0]     offs=0x1830
block_row_dump:
tab 0, row 0, @0x1830
tl: 1872 fb: --H-FL-- lb: 0x0  cc: 1
col  0: [1866]
Compression level: 04 (Archive High)
 Length of CU row: 1866
kdzhrh: --------- Start Slot: 00
*---------
CU header:
CU version: 0   CU magic number: 0x4b445a30
CU checksum: 0x24a713c2
CU total length: 1854
CU flags: NC-U-CRD-OP
ncols: 26
nrows: 99
algo: 0
CU decomp length: 1715   len/value length: 10614
row pieces per row: 1
num deleted rows: 0
START_CU:

同样,另外一个表的19211块也是得到一样的构造信息。

data_block_dump,data header at 0x7fda7a65e07c
===============
tsiz: 0x1f80
hsiz: 0x1c
pbl: 0x7fda7a65e07c
     76543210
flag=-0------
ntab=1
nrow=1
frre=-1
fsbo=0x1c
fseo=0x17c9
avsp=0x17ad
tosp=0x17ad
        r0_9ir2=0x0
        mec_kdbh9ir2=0x0
                      76543210
        shcf_kdbh9ir2=----------
                  76543210
        flag_9ir2=--R-----      Archive compression: Y
                fcls_9ir2[0]={ }
0x16:pti[0]     nrow=1  offs=0
0x1a:pri[0]     offs=0x17c9
block_row_dump:
tab 0, row 0, @0x17c9
tl: 1975 fb: --H-FL-- lb: 0x0  cc: 1
col  0: [1969]
Compression level: 04 (Archive High)
 Length of CU row: 1969
kdzhrh: --------L Start Slot: 00
num lock bits: 8
locked rows:
*---------
CU header:
CU version: 0   CU magic number: 0x4b445a30
CU checksum: 0x24a713c2
CU total length: 1854
CU flags: NC-U-CRD-OP
ncols: 26
nrows: 99
algo: 0
CU decomp length: 1715   len/value length: 10614
row pieces per row: 1
num deleted rows: 0
START_CU:

OLTP下的第一个场景测试,我们暂定为insert测试,这里只针对HCC的表做测试,分别测试append方式和常规插入方式在HCC表及row level locking的HCC表下的表现。

根据文档显示,对已经HCC压缩的表的插入,如果是常规插入,新插入的数据将不会被压缩,只有以append等直接路径的方式插入,才会继续压缩。这里除了需要验证这个事情之外,还需要验证下其他会话的并发插入会不会受影响,如果被阻塞,需要测试row level locking方式的HCC表是否受影响。

SQL> select distinct(sid) from v$mystat;

       SID
----------
       147

SQL> insert into DML_TEST_ARCHIVE_HIGH select * from DML_TEST_NO_EHCC;

99 rows created.

SQL> 

SQL> select distinct(sid) from v$mystat;

       SID
----------
       269

SQL> insert into DML_TEST_ARCHIVE_HIGH select * from DML_TEST_NO_EHCC;

99 rows created.

SQL> 

这个测试为了证明没有row level locking属性的HCC表的插入,不会锁定单个CU。

但是,这个测试测下来,有一个问题,就是对于没有使用append方式的插入,如果插入的数据,当前已经压缩的CU可以容下,那么插入的数据是会被压缩的,如果以没有append方式插入的数据,当前CU放置不下,那么在接下来的分配中,超出当前CU的数据是特么的不会被压缩的。

这个又一次出乎意料。

  COUNT(*) COMPRESSION_TYPE
---------- ---------------------------------------------------------------
        10 COMP_NOCOMPRESS
    323126 COMP_FOR_ARCHIVE_HIGH

SQL> 

OLTP下的第二个场景,我们测试DELETE,这个我也不知道测试什么,我暂且对HCC的表,做两个会话的删除测试。

我测试了两次,如果这个表没有被压缩,我分别在两个会话中,删除object_id=1及2的数据,不提交,是互相不会阻塞的。

但是,如果这个表是HCC压缩,并且没有开启row level locking的话,如果在会话1删除object_id=1的条目,在会话2中删除object_id=2的条目,会话2的删除,是会被会话1阻塞的。

混合列压缩(HCC)在OLAP及OLTP场景中的测试

这也侧面验证了,普通HCC表,锁的最小单元是CU,而不是像普通表那样,受影响的是被其他会话已经影响到的行。不过仔细一想,道理似乎是一样的。


那么,我前面铺垫了那么多row level locking的HCC特性这个时候就发挥作用了。这个特性是在12c的HCC中引入了。Oracle corp可能发现对整个CU加锁影响的范围太大了,为了对OLTP友好,引入了row level locking的HCC的特性,虽然这可能带来一点点的压缩损耗,在前文能看到压缩损耗的情况。


接下来,对那张创建好的row level locking的表做不同会话的object_id=1和object_id=2的记录的删除。

混合列压缩(HCC)在OLAP及OLTP场景中的测试

混合列压缩(HCC)在OLAP及OLTP场景中的测试

可以看到添加了row level locking属性的HCC表的同个CU内的删除是互不影响的。

OLTP中,第三个场景测试,我们将测试update,据前文DELETE测试,可以显然的知道,HCC中不带row level locking的压缩是会被其他update阻塞的。带了的话,如果针对同一个CU内不同记录操作,是不会影响的。如果是同一个CU内的相同记录操作,那会是怎么样呢:)。

UPDATE部分,这里重点测试的是rowid变化情况。

重新生成环境:

SQL> drop table DML_TEST_ARCHIVE_HIGH purge; 

Table dropped.

SQL> drop table DML_TEST_ARCHIVE_HIGH_LOCKING purge;

Table dropped.

SQL> drop table DML_TEST_NO_EHCC purge;

Table dropped.

这次表创建的更小。

SQL> create table dml_test_no_ehcc as select * from dba_objects where rownum < 10;

Table created.

SQL> create table DML_TEST_ARCHIVE_HIGH compress for archive high tablespace ehcctbs as select * from dml_test_no_ehcc ;

Table created.

SQL> create table DML_TEST_ARCHIVE_HIGH_LOCKING compress for archive high  row level locking tablespace ehcctbs as select * from dml_test_no_ehcc ;

Table created.

SQL> 
SQL> col OWNER for a15
SQL> col SEGMENT_NAME for a40
SQL> select s.OWNER,s.SEGMENT_NAME,s.BYTES/1024 SIZE_MB,t.COMPRESS_FOR  from dba_segments s,dba_tables t where s.SEGMENT_NAME like ('DML_TEST_%') and s.owner=t.owner and s.segment_name =  t.table_name order by 2;

OWNER           SEGMENT_NAME                                SIZE_MB COMPRESS_FOR
--------------- ---------------------------------------- ---------- ------------------------------------------------------------------------------------------
HR              DML_TEST_ARCHIVE_HIGH                            64 ARCHIVE HIGH
HR              DML_TEST_ARCHIVE_HIGH_LOCKING                    64 ARCHIVE HIGH ROW LEVEL LOCKING
HR              DML_TEST_NO_EHCC                                 64

SQL> 

查看其中HCC表的rowid及块号分布情况。

SQL> select rowid,object_name,dbms_rowid.rowid_block_number(rowid) from DML_TEST_ARCHIVE_HIGH;

ROWID              OBJECT_NAME                              DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)
------------------ ---------------------------------------- ------------------------------------
AAAR0vAAWAAAEWLAAA I_FILE#_BLOCK#                                                          17803
AAAR0vAAWAAAEWLAAB I_OBJ3                                                                  17803
AAAR0vAAWAAAEWLAAC I_TS1                                                                   17803
AAAR0vAAWAAAEWLAAD I_CON1                                                                  17803
AAAR0vAAWAAAEWLAAE IND$                                                                    17803
AAAR0vAAWAAAEWLAAF CDEF$                                                                   17803
AAAR0vAAWAAAEWLAAG C_TS#                                                                   17803
AAAR0vAAWAAAEWLAAH I_CCOL2                                                                 17803
AAAR0vAAWAAAEWLAAI I_PROXY_DATA$                                                           17803

9 rows selected.

这里可以通过DBMS_COMPRESSION.GET_COMPRESSION_TYPE来确认某行数据的压缩方式:

SQL> select DBMS_COMPRESSION.GET_COMPRESSION_TYPE('HR','DML_TEST_ARCHIVE_HIGH','AAAR0vAAWAAAEWLAAA') from dual;

DBMS_COMPRESSION.GET_COMPRESSION_TYPE('HR','DML_TEST_ARCHIVE_HIGH','AAAR0VAAWAAAEWLAAA')
----------------------------------------------------------------------------------------
                                                                                      16

参考如下:

COMP_NOCOMPRESS CONSTANT NUMBER := 1;
COMP_FOR_OLTP CONSTANT NUMBER := 2;
COMP_FOR_QUERY_HIGH CONSTANT NUMBER := 4;
COMP_FOR_QUERY_LOW CONSTANT NUMBER := 8;
COMP_FOR_ARCHIVE_HIGH CONSTANT NUMBER := 16;
COMP_FOR_ARCHIVE_LOW CONSTANT NUMBER := 32;

COMP_RATIO_MINROWS CONSTANT NUMBER := 1000000;
COMP_RATIO_ALLROWS CONSTANT NUMBER := -1;

可以得知,16就是创建时候的ARCHIVE_HIGH压缩方式。

之后,对这个表,进行更新操作。

SQL> update DML_TEST_ARCHIVE_HIGH set OBJECT_NAME=OBJECT_NAME||'MINOR';

9 rows updated.


再次查看这个表的rowid及块号:


SQL> select rowid,object_name,dbms_rowid.rowid_block_number(rowid) from DML_TEST_ARCHIVE_HIGH;

ROWID              OBJECT_NAME                              DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)
------------------ ---------------------------------------- ------------------------------------
AAAR0vAAWAAAEWOAAA I_FILE#_BLOCK#MINOR                                                     17806
AAAR0vAAWAAAEWOAAB I_OBJ3MINOR                                                             17806
AAAR0vAAWAAAEWOAAC I_TS1MINOR                                                              17806
AAAR0vAAWAAAEWOAAD I_CON1MINOR                                                             17806
AAAR0vAAWAAAEWOAAE IND$MINOR                                                               17806
AAAR0vAAWAAAEWOAAF CDEF$MINOR                                                              17806
AAAR0vAAWAAAEWOAAG C_TS#MINOR                                                              17806
AAAR0vAAWAAAEWOAAH I_CCOL2MINOR                                                            17806
AAAR0vAAWAAAEWOAAI I_PROXY_DATA$MINOR                                                      17806

9 rows selected.

可以看到,rowid,block id,都发生了变化,所以证明对CU内的数据更新,这里有解压,移动到别的block更新的操作。

那么更新后的数据还是压缩的吗?显然,不是了。

SQL> select DBMS_COMPRESSION.GET_COMPRESSION_TYPE('HR','DML_TEST_ARCHIVE_HIGH',rowid) from DML_TEST_ARCHIVE_HIGH;

DBMS_COMPRESSION.GET_COMPRESSION_TYPE('HR','DML_TEST_ARCHIVE_HIGH',ROWID)
-------------------------------------------------------------------------
                                                                        1
                                                                        1
                                                                        1
                                                                        1
                                                                        1
                                                                        1
                                                                        1
                                                                        1
                                                                        1

9 rows selected.

压缩为1,1代表的是COMP_NOCOMPRESS CONSTANT NUMBER := 1,不压缩。所以,除了insert,update也会带来解压不压缩的情况。在执行update操作时,db会将列压缩的数据,转换为行来操作,并且在操作完成之后,并不会再次压缩。

如果需要重新让这些复苏的数据重新压缩,需要显式的move这些表。

刚才注意到,更新会导致压缩数据的rowid发生变化,那么,能不能不变化?答案是可以的。

隐含参数:

混合列压缩(HCC)在OLAP及OLTP场景中的测试

混合列压缩(HCC)在OLAP及OLTP场景中的测试

然后我们复现上面的更新操作:

混合列压缩(HCC)在OLAP及OLTP场景中的测试

第三部分,上面OLAP及OLTP的这么多测试均是单个场景的测试,那么HCC在实际场景下使用起来跟不带HCC的环境对比起来怎么样?这里想起了swingbench。

swingbench不多介绍。但是有个问题,swingbench的对象是自己程序生成的,不能人工干预创建对象用的参数,除非你逐个去改那些脚本。

其实有个简单的办法,就是创建测试表空间的时候,给表空间加上HCC参数。这里只做query high场景下不带row level locking及带row level locking跟非HCC场景下的压力测试。考虑到客户环境不是会串行的,所以我使用4个会话来测试。测试基准数据量为0.5GB,要测三场。

首先生成三个承载表空间,一个是带了HCC属性,一个是带了HCC的row level locking属性,一个是不带HCC属性。

SQL> CREATE SMALLFILE TABLESPACE SOE_EHCC_TBS
  2      DATAFILE
  3          '/ehccfs/ORA19C/ora19pdb1/SOE_EHCC_TBS_001.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240
  4      BLOCKSIZE 8192
  5      FORCE LOGGING
  6      DEFAULT COLUMN STORE COMPRESS FOR query HIGH NO INMEMORY
  7      ONLINE
  8      SEGMENT SPACE MANAGEMENT AUTO
  9      EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

Tablespace created.


SQL> CREATE SMALLFILE TABLESPACE SOE_NO_EHCC_TBS
  2      DATAFILE
  3          '/ehccfs/ORA19C/ora19pdb1/SOE_NO_EHCC_TBS_001.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240
  4      BLOCKSIZE 8192
  5      FORCE LOGGING
  6      DEFAULT COLUMN STORE COMPRESS FOR query HIGH NO INMEMORY
  7      ONLINE
  8      SEGMENT SPACE MANAGEMENT AUTO
  9      EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

Tablespace created.

SQL> CREATE SMALLFILE TABLESPACE SOE_EHCC_ROW_LOCKING_TBS
  2      DATAFILE
  3          '/ehccfs/ORA19C/ora19pdb1/SOE_EHCC_ROW_LOCKING_TBS_001.DBF' SIZE 10485760 AUTOEXTEND ON NEXT 1048576 MAXSIZE 10737418240
  4      BLOCKSIZE 8192
  5      FORCE LOGGING
  6      DEFAULT COLUMN STORE COMPRESS FOR query HIGH ROW LEVEL LOCKING NO INMEMORY
  7      ONLINE
  8      SEGMENT SPACE MANAGEMENT AUTO
  9      EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

Tablespace created.

混合列压缩(HCC)在OLAP及OLTP场景中的测试

混合列压缩(HCC)在OLAP及OLTP场景中的测试

最终能看到生成的数据如下:

混合列压缩(HCC)在OLAP及OLTP场景中的测试

待数据生成完成之后,开始swingbench的测试。这里停止了测试。因为在swingbench的默认场景中,有大量的DML操作,而跟我上文测试的结果,随着业务时间的推移,大部分表都会因DML而变成非压缩表。所以DML测试的意义不大。唯一可能有测试意义的就是OLAP了。这个修改swingbench配置此处省略。

混合列压缩(HCC)在OLAP及OLTP场景中的测试

本文名称:混合列压缩(HCC)在OLAP及OLTP场景中的测试
分享地址:https://www.cdcxhl.com/article14/ggpcge.html

成都网站建设公司_创新互联,为您提供网站收录营销型网站建设微信公众号外贸网站建设微信小程序商城网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

网站优化排名