PostgreSQL11编译支持JIT功能

JIT  just-in-time 即时编译功能

创新互联建站专注为客户提供全方位的互联网综合服务,包含不限于网站设计、成都做网站、黎城网络推广、成都小程序开发、黎城网络营销、黎城企业策划、黎城品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联建站为所有大学生创业者提供黎城建站搭建服务,24小时服务热线:028-86922220,官方网址:www.cdcxhl.com

    JIT在大数据集的查询条件下,可能迅速提升查询速度的作用。但是它也不是任何情况下都能提效的,可以参考这篇  https://www.postgresql.org/docs/11/jit-decision.html

下面,我以编译PG11开启JIT为例演示下JIT的性能提升效果:

注意:JIT的功能需要在编译的时候就开启 jit的支持,PostgreSQL documentation 说明LLVM最低版本需要3.9

wget http://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

 

yum localinstall epel-release-latest-7.noarch.rpm

 

yum install llvm5.0 llvm5.0-devel clang

cd /root/pg_sources/postgresql-11    # 切换到pg11的源码的路径下,执行编译操作 

./configure --prefix=/usr/local/pgsql-11 \

--with-python --with-perl --with-tcl --with-pam \

--with-openssl --with-libxml --with-libxslt \

--with-llvm LLVM_CONFIG='/usr/lib64/llvm5.0/bin/llvm-config'

# 如果有缺少依赖包等报错,可以参考网上的资料补充后,再次执行 configure 命令。

 

修改配置文件,开启JIT的参数。修改后,重启PG,查看到的参数设置值如下:

postgres=# select name,setting from pg_settings where name like 'jit%';

          name           | setting

-------------------------+---------

 jit                     | on

 jit_above_cost          | 100000

 jit_debugging_support   | off

 jit_dump_bitcode        | off

 jit_expressions         | on

 jit_inline_above_cost   | 500000

 jit_optimize_above_cost | 500000

 jit_profiling_support   | off

 jit_provider            | llvmjit

 jit_tuple_deforming     | on

(10 rows)

 

德哥给出的测试样例  https://github.com/digoal/blog/blob/master/201910/20191017_01.md

 

下面是我自己实际测试的(CenOS7+PG11+普通SATA硬盘,PG就设置了shared_buffer=8GB 没有做其它的参数优化,直接开搞)


造些测试数据:

create table a(id int, info text, crt_Time timestamp, c1 int); 

insert into a select generate_series(1,100000000),'test',now(),random()*100;   --也不加索引了,纯靠PG自己来硬抗

analyze a; 

 

\dt+ a

                    List of relations

 Schema | Name | Type  |  Owner   |  Size   | Description

--------+------+-------+----------+---------+-------------

 public | a    | table | postgres | 5746 MB |

(1 row)

 

 

 

在开启jit的PG11上的效果:

set jit=on; 

set max_parallel_workers_per_gather =32; 

alter table a set (parallel_workers =32); 

set min_parallel_table_scan_size =0; 

set min_parallel_index_scan_size =0; 

set parallel_setup_cost =0; 

set parallel_tuple_cost =0; 

 

postgres=# select t1.c1,count(*) from a t1 join a t2 using (id) group by t1.c1; 

Time: 31402.562 ms (00:31.403)

 

postgres=# explain select t1.c1,count(*) from a t1 join a t2 using (id) group by t1.c1; 

                                                 QUERY PLAN

------------------------------------------------------------------------------------------------------------

 Finalize GroupAggregate  (cost=1657122.68..1657229.70 rows=101 width=12)

   Group Key: t1.c1

   ->  Gather Merge  (cost=1657122.68..1657212.53 rows=3232 width=12)

         Workers Planned: 32

         ->  Sort  (cost=1657121.85..1657122.10 rows=101 width=12)

               Sort Key: t1.c1

               ->  Partial HashAggregate  (cost=1657117.48..1657118.49 rows=101 width=12)

                     Group Key: t1.c1

                     ->  Parallel Hash Join  (cost=817815.59..1641492.46 rows=3125004 width=4)

                           Hash Cond: (t1.id = t2.id)

                           ->  Parallel Seq Scan on a t1  (cost=0.00..766545.04 rows=3125004 width=8)

                           ->  Parallel Hash  (cost=766545.04..766545.04 rows=3125004 width=4)

                                 ->  Parallel Seq Scan on a t2  (cost=0.00..766545.04 rows=3125004 width=4)

 JIT:

   Functions: 23

   Options: Inlining true, Optimization true, Expressions true, Deforming true

(16 rows)

 

 

postgres=# select t1.c1,count(*) from a t1 join a t2 on (t1.id=t2.id and t1.c1=2 and t2.c1=2) group by t1.c1;

 c1 |  count 

----+---------

  2 | 1000506

(1 row)

 

Time: 4780.824 ms (00:04.781)

 

postgres=# select * from a order by c1,id desc limit 10;

    id    | info |          crt_time          | c1

----------+------+----------------------------+----

 99999958 | test | 2019-10-18 09:22:32.391061 |  0

 99999926 | test | 2019-10-18 09:22:32.391061 |  0

 99999901 | test | 2019-10-18 09:22:32.391061 |  0

 99999802 | test | 2019-10-18 09:22:32.391061 |  0

 99999165 | test | 2019-10-18 09:22:32.391061 |  0

 99999100 | test | 2019-10-18 09:22:32.391061 |  0

 99998968 | test | 2019-10-18 09:22:32.391061 |  0

 99998779 | test | 2019-10-18 09:22:32.391061 |  0

 99998652 | test | 2019-10-18 09:22:32.391061 |  0

 99998441 | test | 2019-10-18 09:22:32.391061 |  0

(10 rows)

Time: 3317.480 ms (00:03.317)

 

postgres=# select c1,count(*) from a group by c1; 

Time: 5031.796 ms (00:05.032)

 

 

在未编译jit的PG11上的效果:

postgres=#  select t1.c1,count(*) from a t1 join a t2 using (id) group by t1.c1; 

Time: 71410.034 ms (01:11.410)

 

postgres=# explain  select t1.c1,count(*) from a t1 join a t2 using (id) group by t1.c1;

                                                  QUERY PLAN

--------------------------------------------------------------------------------------------------------------

 Finalize GroupAggregate  (cost=6150282.43..6150308.02 rows=101 width=12)

   Group Key: t1.c1

   ->  Gather Merge  (cost=6150282.43..6150306.00 rows=202 width=12)

         Workers Planned: 2

         ->  Sort  (cost=6149282.41..6149282.66 rows=101 width=12)

               Sort Key: t1.c1

               ->  Partial HashAggregate  (cost=6149278.03..6149279.04 rows=101 width=12)

                     Group Key: t1.c1

                     ->  Parallel Hash Join  (cost=1835524.52..5940950.58 rows=41665490 width=4)

                           Hash Cond: (t1.id = t2.id)

                           ->  Parallel Seq Scan on a t1  (cost=0.00..1151949.90 rows=41665490 width=8)

                           ->  Parallel Hash  (cost=1151949.90..1151949.90 rows=41665490 width=4)

                                 ->  Parallel Seq Scan on a t2  (cost=0.00..1151949.90 rows=41665490 width=4)

(13 rows)

Time: 0.636 ms

 

 

postgres=# select t1.c1,count(*) from a t1 join a t2 on (t1.id=t2.id and t1.c1=2 and t2.c1=2) group by t1.c1;

 c1 |  count 

----+---------

  2 | 1001209

(1 row)

Time: 9329.623 ms (00:09.330)

 

postgres=# select * from a order by c1,id desc limit 10;

    id    | info |          crt_time          | c1

----------+------+----------------------------+----

 99999518 | test | 2019-10-18 09:18:36.532469 |  0

 99999088 | test | 2019-10-18 09:18:36.532469 |  0

 99999016 | test | 2019-10-18 09:18:36.532469 |  0

 99998987 | test | 2019-10-18 09:18:36.532469 |  0

 99998899 | test | 2019-10-18 09:18:36.532469 |  0

 99998507 | test | 2019-10-18 09:18:36.532469 |  0

 99998142 | test | 2019-10-18 09:18:36.532469 |  0

 99998107 | test | 2019-10-18 09:18:36.532469 |  0

 99998050 | test | 2019-10-18 09:18:36.532469 |  0

 99997437 | test | 2019-10-18 09:18:36.532469 |  0

(10 rows)

Time: 6113.971 ms (00:06.114)

 

 

postgres=# select c1,count(*) from a group by c1; 

Time: 9868.117 ms (00:09.868)

 

 从上面的测试结果看,基本上, 对于大数据集的JOIN之类的复杂 查询, 用了JIT后, 查询速度在原有的基础上再缩短至少一半。

日常的OLTP+OLAP需求,一套PG11全搞定。

 

网页名称:PostgreSQL11编译支持JIT功能
转载来源:https://www.cdcxhl.com/article12/pgojgc.html

成都网站建设公司_创新互联,为您提供网站设计公司网站收录搜索引擎优化商城网站网站导航外贸网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

h5响应式网站建设