利用tensorflow构建卷积神经网络(CNN)-创新互联

学习前言

创新互联自2013年起,先为化德等服务建站,化德等地企业,进行企业商务咨询服务。为化德企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络。

简介

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

其主要结构分为输入层、隐含层、输出层。

在tensorboard中,其结构如图所示:

对于卷积神经网络而言,其输入层、输出层与平常的卷积神经网络无异。但其隐含层可以分为三个部分,分别是卷积层(对输入数据进行特征提取)、池化层(特征选择和信息过滤)、全连接层(等价于传统前馈神经网络中的隐含层)。

隐含层介绍

1、卷积层

卷积将输入图像放进一组卷积滤波器,每个滤波器激活图像中的某些特征。

假设一副黑白图像为5*5的大小,像这样:

利用如下卷积器进行卷积:

利用tensorflow构建卷积神经网络(CNN)

卷积结果为:

卷积过程可以提取特征,卷积神经网络是根据特征来完成分类的。

在tensorflow中,卷积层的重要函数是:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None),其中:

1、input是输入量,shape是[batch, height, width, channels]。;

2、filter是使用的卷积核;

3、strides是步长,其格式[1,step,step,1],step指的是在图像卷积的每一维的步长;

4、padding:string类型的量,只能是"SAME","VALID"其中之一,SAME表示卷积前后图像面积不变。

2、池化层

池化层用于在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。

常见的池化是大池化,大池化指的是取出这些被卷积后的数据的大值,就是取出其大特征。

假设其池化窗口为2X2,步长为2。

原图像为:

利用tensorflow构建卷积神经网络(CNN)

池化后为:

利用tensorflow构建卷积神经网络(CNN)

在tensorflow中,池化层的重要函数是:

tf.nn.max_pool(value, ksize, strides, padding, data_format, name)

1、value:池化层的输入,一般池化层接在卷积层后面,shape是[batch, height, width, channels]。

2、ksize:池化窗口的大小,取一个四维向量,一般是[1, in_height, in_width, 1]。

3、strides:和卷积类似,窗口在每一个维度上滑动的步长,也是[1, stride,stride, 1]。

4、padding:和卷积类似,可以取’VALID’ 或者’SAME’。

这是tensorboard中卷积层和池化层的连接结构:

3、全连接层

全连接层与普通神经网络的结构相同,如图所示:

具体实现代码

卷积层、池化层与全连接层实现代码

def conv2d(x,W,step,pad): #用于进行卷积,x为输入值,w为卷积核

return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)

def max_pool_2X2(x,step,pad): #用于池化,x为输入值,step为步数

return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)

def weight_variable(shape): #用于获得W

initial = tf.truncated_normal(shape,stddev = 0.1) #从截断的正态分布中输出随机值

return tf.Variable(initial)

def bias_variable(shape): #获得bias

initial = tf.constant(0.1,shape=shape) #生成普通值

return tf.Variable(initial)

def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):

#用于添加全连接层

layer_name = 'layer_%s'%n_layer

with tf.name_scope(layer_name):

with tf.name_scope("Weights"):

Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")

tf.summary.histogram(layer_name+"/weights",Weights)

with tf.name_scope("biases"):

biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")

tf.summary.histogram(layer_name+"/biases",biases)

with tf.name_scope("Wx_plus_b"):

Wx_plus_b = tf.matmul(inputs,Weights) + biases

tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)

if activation_function == None :

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b)

print(activation_function)

outputs = tf.nn.dropout(outputs,keep_prob)

tf.summary.histogram(layer_name+"/outputs",outputs)

return outputs

def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):

#用于生成卷积层和池化层

layer_name = 'layer_%s'%n_layer

with tf.name_scope(layer_name):

with tf.name_scope("Weights"):

W_conv = weight_variable([5,5,in_z_dim,out_z_dim])

with tf.name_scope("biases"):

b_conv = bias_variable([out_z_dim])

with tf.name_scope("conv"):

#卷积层

h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)

with tf.name_scope("pooling"):

#池化层

h_pool = max_pool_2X2(h_conv, pool_step, padding)

return h_pool

全部代码

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")

def conv2d(x,W,step,pad):

return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)

def max_pool_2X2(x,step,pad):

return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)

def weight_variable(shape):

initial = tf.truncated_normal(shape,stddev = 0.1) #从截断的正态分布中输出随机值

return tf.Variable(initial)

def bias_variable(shape):

initial = tf.constant(0.1,shape=shape) #生成普通值

return tf.Variable(initial)无锡人流医院 http://www.0510bhyy.com/

def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):

layer_name = 'layer_%s'%n_layer

with tf.name_scope(layer_name):

with tf.name_scope("Weights"):

Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")

tf.summary.histogram(layer_name+"/weights",Weights)

with tf.name_scope("biases"):

biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")

tf.summary.histogram(layer_name+"/biases",biases)

with tf.name_scope("Wx_plus_b"):

Wx_plus_b = tf.matmul(inputs,Weights) + biases

tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)

if activation_function == None :

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b)

print(activation_function)

outputs = tf.nn.dropout(outputs,keep_prob)

tf.summary.histogram(layer_name+"/outputs",outputs)

return outputs

def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):

layer_name = 'layer_%s'%n_layer

with tf.name_scope(layer_name):

with tf.name_scope("Weights"):

W_conv = weight_variable([5,5,in_z_dim,out_z_dim])

with tf.name_scope("biases"):

b_conv = bias_variable([out_z_dim])

with tf.name_scope("conv"):

h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)

with tf.name_scope("pooling"):

h_pool = max_pool_2X2(h_conv, pool_step, padding)

return h_pool

def compute_accuracy(x_data,y_data):

global prediction

y_pre = sess.run(prediction,feed_dict={xs:x_data,keep_prob:1})

correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:1})

return result

keep_prob = tf.placeholder(tf.float32)

xs = tf.placeholder(tf.float32,[None,784])

ys = tf.placeholder(tf.float32,[None,10])

x_image = tf.reshape(xs,[-1,28,28,1])

h_pool1 = add_cnn_layer(x_image, in_z_dim = 1, out_z_dim = 32, n_layer = "cnn1",)

h_pool2 = add_cnn_layer(h_pool1, in_z_dim = 32, out_z_dim = 64, n_layer = "cnn2",)

h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])

h_fc1_drop = add_layer(h_pool2_flat, 7*7*64, 1024, "layer1", activation_function = tf.nn.relu, keep_prob = keep_prob)

prediction = add_layer(h_fc1_drop, 1024, 10, "layer2", activation_function = tf.nn.softmax, keep_prob = 1)

with tf.name_scope("loss"):

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')

tf.summary.scalar("loss",loss)

train = tf.train.AdamOptimizer(1e-4).minimize(loss)

init = tf.initialize_all_variables()

merged = tf.summary.merge_all()

with tf.Session() as sess:

sess.run(init)

write = tf.summary.FileWriter("logs/",sess.graph)

for i in range(5000):

batch_xs,batch_ys = mnist.train.next_batch(100)

sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:0.5})

if i % 100 == 0:

print(compute_accuracy(mnist.test.images,mnist.test.labels))

另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。

当前标题:利用tensorflow构建卷积神经网络(CNN)-创新互联
网址分享:https://www.cdcxhl.com/article12/cdjddc.html

成都网站建设公司_创新互联,为您提供外贸网站建设自适应网站定制网站云服务器虚拟主机软件开发

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

网站优化排名