C++实例(2)-创新互联

  C++实例(2)

成都创新互联一直在为企业提供服务,多年的磨炼,使我们在创意设计,成都全网营销到技术研发拥有了开发经验。我们擅长倾听企业需求,挖掘用户对产品需求服务价值,为企业制作有用的创意设计体验。核心团队拥有超过十载以上行业经验,涵盖创意,策化,开发等专业领域,公司涉及领域有基础互联网服务南充服务器托管成都app软件开发、手机移动建站、网页设计、网络整合营销。目录标题
  • 1.下面是一个简单的程序,向你展示一个很小的函数要递归调用多少次才会耗光栈空间。(函数的栈帧越大,能进行的递归调用次数就越少)
  • 2.我们使用两个函数来计算阶乘:一个用于计算偶数的,一个计算奇数的。
  • 3.下面是一些何时使用递归或循环的经验法则:
  • 4.在树中插入新节点
  • 5.在树中搜索
  • 6.删除树

1.下面是一个简单的程序,向你展示一个很小的函数要递归调用多少次才会耗光栈空间。(函数的栈帧越大,能进行的递归调用次数就越少)
#includeusing namespace std;
void recures(int count)  //每次调用的count都不一样
{cout<recures(1);//第一次函数调用,因此置为1
}
2.我们使用两个函数来计算阶乘:一个用于计算偶数的,一个计算奇数的。
int factorial_odd(int x)
{if(x==0)
    {return 1;
    }
    return factorial_even(x-1);
}
int factorial_even(int n)
{if(x==0)
    {return 1;
    }
    return factorial_odd(x-1);
}
int factorial(int x)
{if(x%2==0)
    {return factorial_even(x);
    }
    else
    {return factorial_odd(x);
    }
}
3.下面是一些何时使用递归或循环的经验法则:

1).适合用递归的情况:
(1)问题的解决需要将问题分解成相同问题的较小版本,且存在一个明显能用循环来实现的方案;
(2)你正在处理的数据结构是递归的。(如链表)
2)。适合用循环的情况:
(1)很明显能用一个简单的循环来解决问题(例如,要将一串数字相加,你当然可以写一个递归函数,但这不值得);
(2)正在处理的数据结构使用数字进行索引时,如数组。

4.在树中插入新节点

(1) 函数接收一个key值和一棵已存在的树(可能为空),返回包含此插入值的新树。

node* insert(node *p_tree,int key)
{//基线条件:我们到达了一棵空树,需要将新节点插入到这里
   if(p_tree==NULL)
   {  node* p_new_tree=new node;
      p_new_tree->p_left=NULL;
      p_new_tree->p_right=NULL;
      p_new_tree->key_value=key;
      return p_new_tree;
   }
   //决定将新节点插入到左子树或右子树中
   //取决于新节点的值
   if(keykey_value)
   {//根据p_tree->left和新增的key值,构建一棵新树,
    //然后用一个指向新树的指针来替换现有的p_tree->left
    //之所以需要替换现有的p_tree->left,是为了防止
    //原有的p_tree->left为NULL的情况(如果不为NULL,
    //p_tree->p_left实际上不会改变,但替换下也无妨)
    p_tree->p_left=insert(p_tree->p_left,key);
   }
   else
   {//插入到右子树的情况与插入到左子树是对称的
   p_tree->p_right=insert(p_tree->p_right,key);
  }
  return p_tree;
}

此算法的基本逻辑是:如果当前拥有的是一棵空树,那就创建一棵新的树。若非空树,那么如果要插入的值大于当前节点,就将其插入左子树中,并用新创建的子树替换原来的左子树;否则就将新节点插入右子树中,并做同样的替换。

5.在树中搜索
node *search(node *p_tree,int key)
{//如果到达了空树,很明显,值key不在这棵树中!
   if(p_tree==NULL)
   { return NULL;
   }
   //如果找到了值key,搜索完成!
   else if(key==p_tree->key_value)
   {return p_tree;
   }
   //否则,尝试在左子树或右子树中寻找
   else if(keykey_value)
   {return search(p_tree->p_left,key);
   }
   else
   {return search(p_tree->p_right,key);
   }
}

上面的search函数首先检查两个基线条件:是否到达树的分支末端或是否找到了值key。无论哪种情况,我们都知道应该返回什么:如果到达树的分支末端,就返回NULL;如果找到了key值,就返回这棵树本身。

6.删除树

destroy_tree函数也应该是递归的。该算法将先删除当前节点的两个子树,然后再删除当前节点。

void destroy_tree(node *p_tree)
 {if(p_tree!=NULL)
  {destroy_tree(p_tree->p_left);
    destroy_tree(p_tree->p_right);
    cout<<"Deleting node: "<key_value;
    delete p_tree;
  }
 }

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧

本文名称:C++实例(2)-创新互联
地址分享:https://www.cdcxhl.com/article0/ggeio.html

成都网站建设公司_创新互联,为您提供移动网站建设用户体验面包屑导航企业建站网站设计定制网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

营销型网站建设