q1, 首先要确定是barplot还是hist,如果是barplot的话,应该不存在breaks的问题,因为barplot的传入参数是个矩阵;
在宝鸡等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、网站设计 网站设计制作定制网站制作,公司网站建设,企业网站建设,成都品牌网站建设,全网整合营销推广,外贸营销网站建设,宝鸡网站建设费用合理。
我假设你要画的是个hist,我偶遇过这个问题,我的理解是hist的breaks的值要能被范围整除才行;比如x=1:200,break=7的话,就只能画出4个柱来,但如果breaks=10就没问题;基本上是这样的,偶尔也有例外;比如break=5就不行....奇怪得很
最后,没办法的办法,就只能用barplot代替hist了,barplot肯定不会有这个问题,统计下hist参数中的分布情况,转换成矩阵,用barplot吧;
q2, 貌似一般都用一组因素把这些类别区分开,我用abcde,表示你的小学,中学...了,比如这样:
a=1:7;b=8:10;c=c(9,10,11);d=c(40,55);e=100:110
f=factor(c(rep(1,sum(length(a),length(b),length(c))),rep(2,sum(length(d),length(e)))))#先用c()生成数组,在转换成factor,其实数组也ok的,不过plot()中两个数组和factor不一样
x=c(a,b,c,d,e)
plot(x~f)
q3, 就我所知不行;yes或no一定也要是能映射到x,y范围内的点才行;你是想表示分类结果吗?如果是的话,通常用颜色,或者在点旁边的text表示。
q4, 举个例子吧
x=-50:50
y=x^2+x+1
z=10*abs(x)+1
plot(x,y,type='l')
lines(x,z,lty=3)
legend(c('type1','type2'), x=-20,y=2500, col=c('black','red'), lty=c(1,3))
legend的x和y是legend的左上角,匿名参数是类型名称,col,lty,pch 是对应的颜色,线类型,和点类型。
最后,我现在多用ggplot2,如果不抵触的话可以看看,和R的基础作图包思路不是很一样,但是图很清新的;
如果还有问题,建议把数据集data.frame粘贴几行上来,我也试试;
1. barplot函数
a=matrix(1:18,2)
a
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 3 5 7 9 11 13 15 17
[2,] 2 4 6 8 10 12 14 16 18
class(a) #查看a数据类型
[1] "matrix"
注意barplot函数对象要么是向量,要么是矩阵,若不是,则要进行数据数据类型进行转换
barplot(d) #所有参数默认
?barplot
常见参数就不赘述了,几个个人认为比较重要参数如下
names.arg----在每个条形图或条形图下绘制的名称向量。 如果省略此参数,那么如果它是向量,则从height的names属性中获取名称;如果它是矩阵,则从列名称中获取名称。
legend.text----数据为矩阵的时候用,如果legend.text为true,则height的行名称非空时将用作标签。
horiz----默认false,为竖直条形图,改为TRUE,为水平条形图
beside---如果为FALSE,则将高度列描绘为堆叠的条,如果为TRUE,则将列描绘为并列的条
space---每根柱子之前留出的空间量(以平均柱子宽度的一部分为单位)。 可以以单个数字或每个小节一个数字的形式给出。 如果height是一个矩阵,并且next为TRUE,则可以用两个数字指定空间,其中第一个是同一组中的条形之间的间隔,第二个是组之间的间隔。 如果未明确给出,则如果height为矩阵,并且next为TRUE,则默认为c(0,1),否则为0.2。
还有很多参数可以通过help()查询
barplot(a,names.arg = c('1','2','3','4','5','6','7','8','9'),beside = TRUE,horiz = TRUE,col = rep(c('blue','green','gray'),3),legend.text = TRUE)
barplot(a,names.arg = c('1','2','3','4','5','6','7','8','9'),beside = F,horiz = TRUE,col = rep(c('blue','green'),2),legend.text = TRUE)
barplot(a,names.arg = c('1','2','3','4','5','6','7','8','9'),beside = F,horiz = F,col = rep(c('blue','green'),2),legend.text = TRUE)
2.ggplot2包
安装加载包
install.package('ggplot2')
library(ggplot2)
#创建矩阵
data-data.frame(Sample-c(rep('control1',3),rep('control2',3),rep('control3',3),rep('treat1',3),rep('treat2',3),rep('treat3',3),rep('treat4',3)), contion-rep(c('Cell','Tissue','Organ'),7), value-c(503,264,148,299,268,98,363,289,208,108,424,353,1,495,168,152,367,146,48,596,143))
colnames(data)=c('sample',"contion","value")
ggplot(data,mapping = aes(Sample,value,fill=contion))+geom_bar(stat='identity',position='fill') +labs(x = 'Sample',y = 'frequnency') +theme(axis.title =element_text(size = 16),axis.text =element_text(size = 14, color = 'black'))+theme(axis.text.x = element_text(angle = 45, hjust = 1))
#ggplot函数,geom从数据到几何图像,geom_bar为柱状图,geom_line为线型图等,aes形成映射,x轴为sample,y轴为value,堆叠为contion,geom_bar()函数为建立柱状图,stat参数-统计变换,position参数为柱状图形式,position= 'fill'(图形元素堆叠且高度标准化为1),position= 'stack'(图形堆叠图),参数position= 'dodge'(并列数据,非堆叠展示),coord画图在某个坐标系中,facet将绘图窗口分成若干子窗口用来生成数据中不同子集的图形
# labs为标题,theme为设置标题参数,axis.title为轴标题信息,axis.text为轴注释文本,axis.text.x表示设置x轴的信息,还有更多参数详查ggplot2包
ggplot(data,mapping = aes(Sample,value,fill=contion))+geom_bar(stat='identity',position='fill') +labs(x = 'Sample',y = 'frequnency') +theme(axis.title =element_text(size = 16),axis.text =element_text(size = 14, color = 'black'))+theme(axis.text.x = element_text(angle = 45, hjust = 1))+coord_flip() #加的函数可实现水平柱状图展示
ggplot(data,mapping = aes(Sample,value,fill=contion))+geom_bar(stat='identity',position='stack') +labs(x = 'Sample',y = 'frequnency') +theme(axis.title =element_text(size = 16),axis.text =element_text(size = 14, color = 'black'))+theme(axis.text.x = element_text(angle = 45, hjust = 1))
ggplot(data,mapping = aes(Sample,value,fill=contion))+geom_bar(stat='identity',position='dodge') +labs(x = 'Sample',y = 'frequnency') +theme(axis.title =element_text(size = 16),axis.text =element_text(size = 14, color = 'black'))+theme(axis.text.x = element_text(angle = 45, hjust = 1))
前面我给大家详细介绍过
☞GO简介及GO富集结果解读
☞四种GO富集柱形图、气泡图解读
☞GO富集分析四种风格展示结果—柱形图,气泡图
☞KEGG富集分析—柱形图,气泡图,通路图
☞ DAVID GO和KEGG富集分析及结果可视化
也用视频给大家介绍过
☞ GO和KEGG富集分析视频讲解
最近有粉丝反映说,利用clusterProfiler这个包绘制GO富集分析气泡图和柱形图的时候,发现GO条目的名字都重叠在一起了。
气泡图
柱形图
这个图别说美观了,简直不忍直视。经过我的认真研究,发现跟R版本有关。前面我给大家展示的基本都是R 3.6.3做出来的图。很多粉丝可能用的都是最新版本的R 4.1.2。
我们知道R的版本在不停的更新,相应的R包也在不停的更新。我把绘制气泡图和柱形图相关的函数拿出来认真的研究了一下,终于发现的症结所在。
dotplot这个函数,多了个 label_format 参数
我们来看看这个参数究竟是干什么用的,看看参数说明
label_format :
a numeric value sets wrap length, alternatively a custom function to format axis labels. by default wraps names longer that 30 characters
原来这个参数默认值是30,当标签的长度大于30个字符就会被折叠,用多行来展示。既然问题找到了,我们就来调节一下这个参数,把他设置成100,让我们的标签可以一行展示。
是不是还是原来的配方,还是熟悉的味道
同样的柱形图,我们也能让他恢复原来的容貌。
关于如何使用R做GO和KEGG富集分析,可参考下文
GO和KEGG富集分析视频讲解
新闻名称:r语言go画图条目数量 r语言shiny画图
URL地址:https://www.cdcxhl.com/article0/dopseoo.html
成都网站建设公司_创新互联,为您提供品牌网站制作、定制网站、微信小程序、企业网站制作、网页设计公司、商城网站
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联